Temperature Accelerated Dynamics

A very brief introduction

Arthur F. Voter
Theoretical Division
Los Alamos National Laboratory
Los Alamos, New Mexico USA

Work supported by DOE/BES, LANL LDRD, DOE/ASCR, DOE/SciDAC

Infrequent-Event System

The system vibrates in 3-N dimensional basin many times before finding an escape path. In temperature accelerated dynamics (TAD), we raise the temperature to quickly find a few escape events. Using temperature extrapolation, we determine which event would have happened first at the low temperature.

Los Alamos

Temperature Accelerated Dynamics (TAD)

Concept:

Raise temperature of system to make events occur more frequently. Filter out the events that should not have occurred at the lower temperature.

Assumptions:

- infrequent-event system
- transition state theory (no correlated events)
- harmonic transition state theory (gives Arrhenius behavior)

$$k = v_0 \exp[-\Delta E/k_BT]$$

- all preexponentials (v_0) are greater than v_{min}

TAD Procedure

- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
 (e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low}.
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low}.
- Go to new state and repeat.

TAD temperature-extrapolated time

Because each rate is assumed to be Arrhenius,

$$k = v_0 \exp[-\Delta E/k_BT]$$
,

the time for each particular event at high T can be extrapolated to low T:

$$t_{low} = t_{high} \exp[\Delta E(1/k_B T_{low} - 1/k_B T_{high})]$$
.

This time is sampled correctly from the exponential distribution at low T, mapped from the high T sample:

The Arrhenius view

when can we stop?

The confidence line

For a pathway with rate k, the time τ required to be certain with confidence 1- δ that at least one escape will occur is given by

$$\tau = (1/k) \ln(1/\delta)$$

For an Arrhenius rate, $k = v_0 \exp(-E_a/k_BT)$, all but fraction δ of the first escapes will occur above the line with slope E_a and intercept $\ln \left[v_0 / \ln(1/\delta) \right]$

TAD - when can we stop the MD and accept an event?

After time t_{stop} , with confidence 1- δ , no event can replace shortest-time event seen at low T.

Move system to this state and start again.

Exact dynamics, assuming harmonic TST, v_{min} , uncertainty δ .

MD+TAD metal deposition simulation

- MD for each deposition event (2 ps)
- TAD for intervening time (~1 s)
- Embedded atom method (EAM) for fcc metals

MD+TAD deposition of Cu/Ag(100)

T=77K, flux= 0.04 ML/s, matching deposition conditions of Egelhoff and Jacob (1989).

Second-layer Cu atoms exhibit novel mobility at T=77K, due to epitaxial strain of Cu on Ag(100).

Sprague, Montalenti, Uberuaga, Kress and Voter, Phys. Rev. B 66, 20415, 2002. Los Alamos

Examples of TAD Studies

Cu/Ag(100), 1 ML/25 s T=77K, Sprague et al, 2002.

Interstitial emission from GB after cascade, µs, Bai et al, Science, 2010.

Annealing nanotube slices, μs , Uberuaga et al, 2011.

Interstitial defects in MgO, ps – s, Uberuaga et al, 2004.

Growth of Cu(001), MD+ParTAD, 5 ML/ms, Shim, Amar et al, 2008.